Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress.

نویسندگان

  • M W Hentze
  • L C Kühn
چکیده

As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translational regulation of mammalian and Drosophila citric acid cycle enzymes via iron-responsive elements.

The posttranscriptional control of iron uptake, storage, and utilization by iron-responsive elements (IREs) and iron regulatory proteins (IRPs) provides a molecular framework for the regulation of iron homeostasis in many animals. We have identified and characterized IREs in the mRNAs for two different mitochondrial citric acid cycle enzymes. Drosophila melanogaster IRP binds to an IRE in the 5...

متن کامل

Measurement of Renal Vitamin E for Assessment of Iron and Nitric Oxide Interaction in Rats

Oxidative stress has been implicated as an important factor in induction of many disorders such as nephropathy and cancer. Iron by producing hydroxyl radical can cause this kind of stress. On the other hand nitric oxide (NO) when its concentration is high results in oxidative stress. Iron and NO have some interactions in each other function but there is no total agreement on this. For example i...

متن کامل

Relationships and distinctions in iron-regulatory networks responding to interrelated signals.

Specialized cDNA-based microarrays (IronChips) were developed to investigate complex physiological gene-regulatory patterns in iron metabolism. Approximately 115 human cDNAs were strategically selected to represent genes involved either in iron metabolism or in interlinked pathways (eg, oxidative stress, nitric oxide [NO] metabolism, or copper metabolism), and were immobilized on glass slides. ...

متن کامل

Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury

BACKGROUND Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. METHODS We established a rat model of central pain after SCI. Rats were divided randomly i...

متن کامل

Inactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress.

Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 16  شماره 

صفحات  -

تاریخ انتشار 1996